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NEW INVESTIGATIONS OF THE OPTIMUM RENDEZVOUS

MANEUVER OF SPACE VEHICLES ON ELLIPTICAL

TRAJECTORIES FOR MINIMUM FUEL CONSUMPTION

Alexe Marinescu*, Stefan Staicu **, Vladimir Cardos***

1. Introduction

It is difficult to obtain analytical solutions to the optimum /146

rendezvous maneuver problem for minimum fuel consumption and assum-

ing ellipticalLt-r-aectorie s, if variational calculus is used.

In spiteof the various formulations of the variational prob-
lem for the rendezvous maneuver on such trajectories, only a few

authors ~were able to| finding analytical solutions for the optimum

variation laws of the flight parameters during the powered phase.

As far as we knowIno numerical results of any practical interest

have been published. In the following we will treat the rendezvous

maneuver Efor minimum fuel consumption on elliptical trajectories.

This is based on the general formulation o~ the variational problem

for the rendezvous maneuver on arbitrary conic section trajectories

which was developed by Al Marinescu in [1]. We will give a compact

but very complete description of the problem. We will emphasize

the most advantageous solution paths for optimum motion of the

propelled spacecraft in a critical investigation. We will then

obtain useful numerical results. The hypotheses and approximations
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Construction, Bucarest.
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which are used as a basis for the differential equations for deter-

mining the extremal functions were specified in [1,2]. Also, we

should point out that the accuracy improves if the eccentricity

of the trajectory is small, i. e. the thrust phase can be longer the

smaller the eccentricity.

The results can be used for large eccentricities (cs0.1)

during the contact phase because'of the approximations. For small

eccentricities (c<0.1) it can be used for the contact phase as well

as for the approach phase.
2. Notation

OXZY

Axzy

x, z, y

r (t)

rop
p

'P

p (t)
t

T

V,, V,, VI]

ax az, a.l 1

g ", g- g o

arr,, a Ur,

Inertial system with origin at the planet
center (Fig. 1)

iTarget fixed (orbital) coordinate system!

Coordinates of the propelled s'paccraf-
in the orbital. systemi

Radius vector of the target body

Radius vector to &erigee

Focal parameter of the trajectory of
the target body

Eccentricity of the target body trajectory

Gravity parameter

True anomaly of the target body

Time

Burn duration

Components of the relative velocity of
the propelled 'spacecraftl in the orbital system

Components of the thrust acceleration in
the orbital system

Components of the gravity acceleration of the
orbital system

Components of relative (total) acceleration in
the orbital system

Coordinates of t'he target body at the beginning
of the maneuver (Fig. 2)
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Notation - cont'd

Coordinates of the target body at the end
of the maneuver (at the contact time)

Average coordinates of the target body

' [= (rol + rO2 )/2, = (9t + 992)/211

Lagrange Multipliers.

,/ i 

I
x~~~ 

Fig. 1

'onSr. 2, 92

Fig. 2

3. Investigations of the optimum Rendezvous
TManeuver based on linear ,Equations of
Motion of the Powered Spacecraft

(linear theory)

Just as was shown in [11 within the framework of the linear

gheory, the variational problem of optimum _Irendezvous maneuver for

minimum fuel consumption on the elliptical trajectories (0<6<1)

amounts to finding the minimum of the functional'--

o (aX 2 2 + a/92) (1)

with the conditions .
[ dx(, = - Vx = O

I dt

dV,
(I) -- dt -_al x + c 2 Z' - a2 V z - a z

=
O ,

Idt (2)

dz
= - V, = O,

3

r0 2 , 2 |

romn, M, I
vJOP' e~r I

I 

I

t''

·----- .- A, i. .

I

I 

-
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d I

) 4 = dt -2 X - fi z + a, Vx,- az = o,

dy
,5s = - V = ,0

dV dt

I 01 = lip 
4 3 '

rnr, rol,,

t2 = 3 sin 9,, 
ro0 ,,

T rom

4 3

ri 
tom

Using the method described in [1,2], we

ential equations .for-the extreme curve:
f '

(3)

Ii

obtain the following differ-

I 4 = -- cal d. -a- Ct2 A4 d2 =A + at 14,
dAt Adt

d;3 di4 
-~-= 2 2- f1i ).4, % 1 -A's,Adt d

dt

4 dx dV a

dz dV 2
t Vz, dt _ 2x+tz - a, sVz+az,

= VU , y + ay
d;t dt

-I

(4)

4

where

(2)
c'ontj.

1,
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We also obtain the following algebraic equations

2a,--2=0, 2az--A 4 =, 2ay--A=O

= ~.... _ (5)

The solutions of the systems (4) and (5) represent the

optimum variational laws of the motion parameters of the powered

spacecraft, which characterize the optimum rendezvous maneuver on

elliptical trajectories for minimum fuel consumption.

3.1 Exact Solutions

We will now attempt exact integration of the differential

equation system (4). First of all we should note that the fifth

and sixth equation lead to

dt2dt2 + y AO = (6)

and the eleventh and twelfth equation lead to

d2y

d,- + y= a,, =a

These equations can be solved without any difficulty.

The other equations can be grouped into two different systems.

Classical methods are used for their integration.

The following system is the result of the first four equations

dA-
dt

dt
dt a3 )2- 23 = 0

using the usual substitutions

1A, = A er, B e rt, = B ert, , = D er t

5



we find the following characteristic equation

r + (2 - PI - 1 ) r2 + 2 o.2 3 ¢r-' X, + 22 = o .
I...... - -. ..... (9)

which has two real roots r, r2J within the range of values of

interest in practice. It also has two imaginary rootslrs=V+in, r4=v-in1

The solutions of system (8) obtained in this way are

l ml, C er't +- l2 C2 er' t

+ (a, cosi t - b1 sin 7 t) C, e t +

+ (a, sini t + bl cosl t) C4 e"t,

A2 = m2 1 Cl el' t + m2 2 C2 er' t +

+ (a2 cos t - b2 sin V t) C3 e' t +

+ (a, sin i t + b2 cos ri t) C4 eyt

As '
= mst C 1 er.t + mi2 C2 ert- +

+ (a3 cos*/ t - b, sin 2 t) C3 e't +

+ (a3 sin t t + b3 cosl t) C 4 eS"t

4 = m,4 Cl e' . t + m42 C2 ert' +

+ (a4 cos 1 t - b 4 sin t) C 3 et' +

+ (a4 sin, t + b4 cos , t) C4 e' t

(10)

with

for the homogeneous s

6

m, 1 - r, 3 + (#I - 032) r, - 02 c3,

mi
2 1 = r1 2 -I ,1

m,3 = x2 r +' fl t, m'4 = -M 3 rl - 012

m 12 =- r 2 1 + (I - ,t3
2 ) r2 -0 2 3 ,

Mn2 2 = r22 - 1,

mS3 2 = 2 r2 f l 1 3 , n 4 2 =- 3 r 2 - 0 2,

a1 = - VI + 3 v72 + (fl, -0 3 2 ) ' - 2+.,

b -= - 3 V2 + 73 + (/I - C32) ,

a2 = v2 - 12- fl, b2 = 2 v 1 ,

a 3 = oC2 V + fit ,3 bN = .2 t7,

a 4 -=V 3 - 0( 2 b4 = -a3.77

dx

,ystem -dt - =
dV,
dt o. X x +2 Z -' 3 Vz = 0dt

dz
-- Vz =o,

dt

dV2
- V 'X- -- + Y 0

3
V -- 1 z =- 0Odt

(12)

t

0



and using the notation 'i

x=Aert, V-=-Beft, z=Ce T t , V 2=Dert

we obtain the following characteristic equation

(13)

Since the characteristic equation (13) is>tonly different

from the characteristic equation (9) because of the sign of the

coefficient of j., we obtain the following result from the theory

of algebraic equations

i V'-iV7n, 4= -V+i7. \ (14)

In this case the solutions of system (12) are given by

x = n, C3 e-rlt + n1 2 C6 er2t +

+ (cl cos 7 t + dl sin 1 t) C7 e- vt +

+ (- cl sinq t + d, cos ?1 t) Cs e- 't , 
Vx = n 21 C 3 e-rlt + n 2. Cs e - r t +

+ (c. cos r t + d, sin 77 t) C7 e - vt +

+ (- c, sin 7 t + d2 cos t) C8s e- 't

z = ns Cs e-r t' + n 2 C e-rt +

+ (cS cos 7 t + ds sin:1 t) C7 e-Yt +

+ (- cs sin i t + ds cos7 t) C e - t ,

Vz = n41 C 5 e-r" t + n4 2 C. e-rSt +

+ (c4 cos r7 t + d4 sin 1 t) C7 e- vt +

+ (- c4 sinr/ t + d4 cos7 t) Cs e' t . |

(15)

7,

I, I-,, 6I-

\
\

.{!1~~3) Pi~rr4 .'~ ~ + -~ ( B-al~) ~-2 ~a2 aa ,~ r ~+ a * = ° ~.:~I \
.(I3) j4 + (0as2 -/ql -- °41) F2 -- 2 a2 oas F + olX ~l'+ OC2 2 = 0 .

iII
f
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with \/149with ,( f,, = - rt - -(cas - -P) r -- a +a3,

i 2 = a, r2 - (2 a3 r, - (Ca, f1 + 22) (16)

nat = -r a. - axt ai, n4. = r
F
2 aS + at aS rl,

I nl2 = -- rp
a

-(as 2 -- ft) rz - a, a#a,

n22 = I, rt
2

-
- a2 a 3 r 2 -

- (a, fiP + a2 2
) ,

n32 = - r 2 a 2- at ,t n 4
2 = r2 2 2 + a3 r 2 ,

C¢ = a, di = bl,

2 t 2 - 1 2 - 2 v - X / -a22 

d2= 2 v ; ca I- a2 %3 rl,

C3 = - v a2- (LX 3 S, d3=- 2 ,

C4 = 2 V - C.2 -72 + a
1

'M,

d 4 = 2 v7 %a + a, 3 .

Clonsidering the solution of equation (6)

= C, cos t + C sint + Co sin t (17) = /

of solutions (10) and the algebraic equation (5), we find the

following components of thrust acceleration

1
a= [m 21 C, e'rt + m22 C2 e r t +

2

+ (a2 cos t t - b, sin ~ t) C3 e"
t +

+ (a2 sinn t + b2 cos t t) C4 e4t],

1
a z - [i 4 1 C 1 e

r
' t + M42n C2 e

r
' t +

2

+ (a4 cos rj t - b4 sini) t) C3 evI + (18)

+ (a4 sin ,/t + b4 cos t t) C4 evt]

These expressions can now be considered as the:.right terms

for the second and fourth equation (12) as well as for the homo-

geneous equation corresponding to (7). The solutions of the non-

homogeneous equationslare derived from the solutions of the homo-

geneous equationslusing the variation of constants method. The

calculations performed by the authors are quite complicated and

8



it is not easy to follow the solutions.

Considerable computational effort is required to determine the

integration constants. The work is even increased because of the

solution of the characteristic equations for any change of an

individual parameter.

The increased accuracy determined in this way does not mean

this method should be used. This. is because it is easy to make

*mistakes due to the great complexitytof the calculations. This isl_

why the authors believe that the approximation method described

in [2-] is more desirable.

3.2 Approximate Solutions

According to the method mentioned, new solutions for systems

(4) and (5) are calculated, which were used for numerical applica-

tions. An electronic data-processing computer was used.

Without going into detail, which can be found in m211, we will'

only give one of these new expressions for the optimum variational

law of the equations of motion of the propelled spacecraft, which

was determined according to this method:

=1 ( CI _ K 2 c/sin K t-
1 k K' +\ 

cosKt----t+ CE -. -..
2\ K K2 / 2 2

C_ C2
a 2 = - cosK t+ -sin K t,

2 2

Cs Cea, -- cos w t + sin co t,2 2
(19)

V \ a2 M _ a sN) t sin K t --

-/2 2 N 2+ - cos Kt+
\2 K3 2K 2

9



K4 2K 3(N CO + 

+ [2K4- + 2 K
3

C+ K2

+°- ( N + C, + cos K t-;13 G 12K 2 K2

cl ( CS t3 +
12 K2

(c+ (2 c C4 + 2 + C, _ C k4 K2 4K 2 4/

-- CH ,32 C+ C
4

-- t + C1 i,

M N
V= + t sin K t - - t cos K t +

+ CO cos K t + C1 0 sin K t +

_ C _ ) C____
2 K2 2 K2

= t cos o t + t sinwt+ ( 
4 4

4c-S-wC .sinoct+

(C-w- cost

x ·=- , \ T---- sin K t -

02 Ma3 N +

-- t cos K t +

a2 K4( 2tK4 

t' +
'48/K2

10



+ (_ '_ 4 , + q C _ C
12 K2 12 K2 12

_ (-a2 Cl+ a3 2 C4 _C 4 ) t2 + Cl t + Cl

Nt Mt
z:- sinK t --- cosKt +-

(2 K3 +K )oK+

+ s C3 o o t C4
+ -4-K t2 -- k t + C,4 K2 2 K2

C5
y= tsin o t-

4w
tcosc t +

4w

+ C7 cos co t + C sin ol
-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

with

= 1 (_32 C a, C K = _ 1 ,(a l_- + K c,

j N= K + K x C .
-2 (K - 2+ , 

Expressions (19) contain 13 arbitrary constants C,, C2,... C,3
They are determined from the initial conditions

x (o) = x0,

z (0) = zo,

Y (0) = Yo,

Vz (O) = Vo,

V, (o) = V,,,

V (0)= VY,I

the contact 'conditions

x () = 0,
z (r) = 0,
Y (r) = 0,

V, (r) = O,

V, (r) = 0,
1 4 (C)= O

(19)

(20)

(21)

(22)

11



and the additional conditions

C,11 K4, (23)
2 K4

'->e latter conditioniisithe result of the fact that these solutions

obtained must satisfy the tenth equation (4), which 'has been

differentiated [2]. The following expressions are found for the

thirteen constants from equations (21), (22), and (23).

C2 b2t C= ^', C 6o .. cs

1
C, = - (B C + B5 C2 + Be Cs - BS),

B7

_c=AS C=4 (- B2 -VV) (24)
Cs- _ C4to to,

B, 2 K2 '

a: as as Cs
C, = K A3 C,1 4C- 2-2 KZO

4K K 3
- o

2 K4

Ci 2= Vr - A 4 C - Al C2 - C K -C1O

CI
3
= xo -A C+A2 C2 + K2C + KC.

The following relationships are used in these expressions:

0 = D, D DD1 + D 2D 7D, + D3D, D5 lo-
-D D7 D1 0 - D2 D 5 Di, - D3 Ds D 9 ,

( 5l= D2 D7 D1 2 + Da Ds D8 D + D4 Do DD1 -
- D 2D8 Di - Da D DD 1 2 - D4D 7 D1 o,

I = dI D' DI3 + D5 D D 1 2 + D4 D 7 D9-

I % ' -DD 7D, 
1

2 -DD 8 D9-D 4 D 5 DI 
1
,,

i
= D D 1D2 D2 + D2 Ds D+ D4 D5 D -

- D Ds1 Do -DD 2 D5 D 1 2 - D4 DD D 9 ,

12



D1 = B7 B9 - B4 B1 2 , D = B7 B10 -- B B 12 ,

Ds = B7 1 1 - B B 2 , D = B7 7BIS,- Bs B12 ,

D5 = B7 B 14 - B4 B1 7 D 6 = B B 5 - BB 1 ,

D7 = B7 B 6 - B6 B7 , Ds= B B 1 8 - Bs B17 ,

D9 = B7 B 9 - B4 B22, Do = B7 B2 0 - B5 B22 ,

Dll = B7 B2 - B6 B2 2 , D12 = B7 B2 3-B B22 ,

B1 = A 19 (w T cosw r - sin c T) +

+( A2o + c s 4 I r si n woT,

B2 = A19 (t VY0 + Yo) COS Co T +

+ (Vyo A 2 0 +-4 ) Ty sin w t,

B = 4 o VO A2 0 +o Yo sin o I -
Bo

- o (cos W) T + 4 t A 20 ),
B,

B4 --A + As (- a - - K AloA47+ As

B6 = A2 + A 6- + A tK ) -+ 4 \KK

B
7

=A
8 - _K 42, 

,,

B8 =-aa~-KAto -F ro+

B, = As - Al, CX2 as ( C' - + T K ) )

B1o = A12 + C4i- cos K T. ,K 
Bs 4 K,( -2 o K ), 

B 2 = -e 2 sinKt- K t,

2 K4

2 K

B= -zocosKt- K---sinKT,

2 ~ 2 K

B12. ." (si KT K

13



B1 4 A3 (a,3 +- K2 A 9 ) - A4 + A 1 J,

BI =- 2 4 K (
3

s + K 2 A) + A 1 4 - Al,
4 K 5

BI7 = -A 8 - 2K4 ( + K2 A) +

1 2 K2 (K2' 
Bl= As 2---¥ -K3 -K A 1 ),

BIB = ZO (a,, + K' A) - xo + Vo(0 - K A,)

B, = Al, + K As sin K t,

B,, = Al 8 -a2 a sin K T,

K
s

' (sin Kr- Kr),B21 = - 2 (sin K T-Kr),-

as (1 - cos Kr)B22 = - 2 K2-cosK),

B23 = K zo sin K r - Vzo cos Kr,

g=2 a32 5 a2
4K 6 4K---

A2= -- +
32 a3L2C CtS3

A- = + 4 K ( 2 KS

as 2 1
4 K 4 2- 4S--2'

2 C . 3 L. 
21 ( 4KK 4K' 2

A5= 4 Ks T sin K T -

4K6 4K 42 rcosKr+

+ (3c f + 2) sin K5 +

~~~(4 K4 K7 26))'
+ 4K + 4 4)1 K os Kr

/ = 212 K2 - L33 L -- 4A 6 - 4 K0 4iK 4 4 K2 rsinK -

4 K6 k K 4 K

4K= 2(' - 4

a, ,, + 4 + ,C 1A 7= 4K __ - 3--)--
-48 K2 1\ 2 K4 1'2

As -:t T T2 "12 K2 iK\' 4'

/151

14
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Ao =- sin K r - a- cos K r,
Ks K2

A 10 4= 3 sin K r - -- cos K Sr,
2 + - K +

Al( 4CS + T( )rsin Kr - 4Ko4 T

4 KS 4 K4 4K

A = - sK T COS K

4 (as - 4 4K) sin KT

A= \ -3 +4- sin K T 
+ K2 4 KCOSA 1 3 - 474kT KT + sin KT +

+4 K2 O

T +

os KT

K T -

(_~La3Y,
2

a,,,-\4KS + - sin Kr+
+ \K5 + 

4 0css os K r,
2 K6 4 K 4 K2)CS

A4= 4 K4 2rsin K -

/ 2 J x + 5 3
3

+ *3 ) T COS K T 4Af =CI +~ 4 + K3 os

~~+ Ks- J cos Kr

Als = , 2 ,
4 K2 2 K2 /

At 2 +32 a
A1 6 4 K 5 K3'

A1 7 = rsmK3+ 2

Al = ( 3 +i rsinK - rcosKr,

41 4/ K 41

T CsOCO T Csin O T

4 4wo

rsin wo r cos (owr
A2o 44 4t I

, I

I

I

4--J

, \
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4. Investigation of the diptimum Rendezvous
Maneuver based on the Non-linear Equations
of Motion of the Powered Spacecraft

(non-linear theory)

If the non-linear equations of motion of the powered space-

craft are used (non-linear theory), then the variational problem

of the optimum rendezvous maneuver for minimum fuel consumption

amounts to determining the minimum of the following integrals, as

was shown in [2]

I= f(a 2 + az2 + a 2) dt
0 ~o ~. (at ~(1')

with the conditions

Ax
* = - V 5)' O

dt

r 
-
* V2 _ r1 

2° rom±

+ z sin (o + y 2 -a

[X2 + (r0 + Z)2 + y 2]3/2 a

(1'4 = dV2 4I

¢4= dt ', M zr o

.+ 2 V, ~.-Y x sin (. +

[X2 +( rom, + z)2 + ]/2- =o

dy-I* -V Iv,,= 0,

dVy +

q- X + (rom q- Z) 2

-
+ Y2]3/2

16



As also stated in [2], in this formulation, the optimum /152

variational laws for the motion parameters of the powered space-

craft are derived using an iterationmelthod, and the initial

values of the Lagrange mlultipliers Alo, 2, ... ,6oI are taken from

the linear theory.

Just as for circular trajectories [3] only the optimum con-

trol program is of special interest for the non-linear tiheory,

i. e. for the determination of the thrust acceleration components.

In order to compare the values derived from the linear and

non-linear theory, we will now give the values of the first approxi-

mation of the thrust acceleration components derived in [2]:

Jax) = A 24 (20±rP +2 7) t], (26)
lt)= 40 - [ -(2 A2 63

2 2 [ rom

ay(t ) _) ) _1 (260 - 50 V).
2 2

5. Numerical Example

Using an electronic data-processing computer, we calculated

the thrust acceleration components x', aza, a for different flight

trajectories having eccentricities e = - 0 0. 01, 0.001, 0.05 accord-

ing to the linear theory. The numerical values shown in Table I

were used for the four variations, of which the first represents

contact with the spacecraft and the other three represent approach.
6

These are shown in Figures 3 to 6.
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rariatio. rop [10mm] p [106 ml e [0] / [0] | [1014 m3 /sec2 ]

1 6,560 7,216 0,1 105 110 3,986

2 6,578 6,907 0,05 105 130 3,986
3 6,583 6,649 0,01 105 160 3,986
4 6,616 6,649 0,005 105 200 3,986

rariation xo [10 ml zo [103 mI yo [1 0
3

m ] Vr, [m/sec] Vz, [m/sec] V, 0o [m/sec] r [sec]

1 3,6 1,2 1,0 - 80 - 25 - 20 86

2 - 10 4 3 - 140 - 40 - 30 397
3 25 15 10 - 180 - 70 - 40 824

4 '80 50 25 - 220 - 130 - 60 821
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Using these values, we determined the components of relative /153

acceleration of the powered spacecraft based on the equations of

motion. This was plotted in in Figures 7 to 10.

The thrust acceleration components 'a), ai), a/()l determined

according to the non-linear theory as a first approximation are

found to be only slightly different from those obtained according

to the linear *theory. This is why they are not shown here.

Using the linear theory we also determine the components /154

-,vvVI of relative velocity of the powered spacecraft as well 

as its coordinates x, z, y. These are shown in Figures 11 through

14 and 15 through 18.
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Correction: Instead of s=0.01 we should
have written £ a"0.005

6.X FINALA REMARKS

The numerical calculations carried out for the optimum
rendezvous maneuver for four different elliptical flight trajec-
tories show that the thrust acceleration components 'a ,aa,I

are linear for small burning times. For longer burning times,
they deviate from this behaviour (Figures 3 to 6). For short
burning times, the eccentricity of the flight trajectory influences
the linear course of the thrust acceleration components in an
insignificant way. However the influence is strong for long burn-
ing times.

In addition, for short burning times, the thrust acceleration
components a,, a,, alt dominate and are close to the values of the
(total) relative acceleration components a,,, a,, ai . Large differ-

ences between these values appear for long burning times (Figures
7 through 10). Also, we should note that the eccentricity of
flight trajectories influenceslthe linear cou~rse of the relative
acceleration components axr azr, a-r more than those of the thrust

accelerationJ az,az,ay,, 
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of the relative velocity of the

powered spacecraft and its coordinates x, y, z have a monotonic

course, except for cases in which the target body is passed

(Figures 11 through 14 and 15 through 18).
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